Alan Turing's note to Rolf Noskwith on unit equilateral triangles in n dimensions

annotated by Patricia McGuire Archivist King's College, Cambridge

This is Turing's note, with only the following changes: footnotes have been added, to clarify, specify necessary conditions, or spotlight when corrections are made; abbreviations have been expanded; limits have been provided for the indices; punctuation and the word 'the' have been added to facilitate reading; square brackets were added in one equation to clarify; and equation numbers have been introduced for Turing's two conditions and the specification of the question he sets out to answer.

We construct an equilateral [unit]^a triangle in n dimensions [in the first 2^n -tant]^b with 0^{th} vertex at the origin^c and the i^{th} vertex having coordinates ℓ_{ij} , $\ell_{ij} = 0$ if j > i.^d One easily verifies that we must have

$$\sum_{1 \le j \le i} \ell_{ij}^2 = 1 \qquad \forall \ 1 \le i \le n \tag{C1}$$

and

$$\sum_{i \le k} \ell_{ij} = (k+1)\ell_{kj} \qquad \forall \ 2 \le k \le n \ and \quad j \ne k$$
 (C2)

(the second condition means that the perpendicular from a vertex to the opposite side meets it in the centre of gravity of the vertices of that side). These conditions determine the ℓ_{ij} completely^e. In fact:

$$\ell_{ii} = \sqrt{\frac{i+1}{2i}} \qquad \forall \ 1 \le i \le n$$

$$\ell_{ij} = \frac{1}{\sqrt{2j(j+1)}} \qquad \forall \ j < i$$

$$(\ell_{ij} = 0 \qquad \forall \ j > i)$$

which may be verified to satisfy the conditions.^g Now we want to know how many sets of integers m_j ^h there are such that

$$\sum_{j=1}^{n} \left(\sum_{i=1}^{n} \ell_{ij} m_i \right)^2 = 1 \tag{C3}$$

Now there are no solutions except with $m_n = 0, 1$ or -1, for if $m_n^2 \ge 4$

$$\sum_{j} \left(\sum_{i} \ell_{ij} m_{i} \right)^{2} \ge \left(\sum_{i} \ell_{in} m_{i} \right)^{2} = \ell_{nn}^{2} m_{n}^{2} \ge 4\ell_{nn}^{2} = \frac{2(n+1)}{n} > 1$$

^aCondition C1 stipulates this.

^bthe first quadrant, octant... This is not required for conditions C1 and C2, and the question involving condition C3 can be asked for any equilateral unit triangle in n dimensions, but the definitions Turing later gives for the ℓ_{ij} are all non-negative.

^cTuring wrote 'first vertex at the origin' but the indexing in the rest of the paper begins at i = 1, $\ell_{11} = 1$ and so the origin is a 0^{th} vertex.

^dThe i^{th} vertex is $(\ell_{i1}, \ell_{i2}, \dots, \ell_{ii}, 0, \dots, 0)$ with $\ell_{ij} \geq 0$. Such an equilateral unit n-triangle is constructed by including the origin, taking the first vertex as $(1,0,\dots,0)$ and then, for each $k=2,\dots,n$ adding the k^{th} vertex on the perpendicular line orthogonal to, and through the midpoint or 'average' of, the triangle that is the previous k-1 vertices plus the origin. Take for the k^{th} vertex the point on that line at distance 1 from the origin, and with positive k^{th} coordinate.

e if we constrain the n-triangle to the positive 2^n -tant

^fThe rest of the note takes these three equations as the definitions of the ℓ_{ij} . Turing wrote $\frac{1}{\sqrt{2j(j-1)}}$ for j < i but later used the correct $\frac{1}{\sqrt{2j(j+1)}}$ and so we give the correct version here. This error of Turing's might suggest this document is a fair copy of his workings which don't survive.

gC1 and C2

hi.e., how many vectors $\mathbf{m} = (m_1, m_2, \dots, m_n)$. Later Turing introduces the notation g_n for the number of such vectors.

¹Now suppose $m_n = 0$. The number of solutions is the number of the last lower dimension, g_{n-1} say.

Next suppose $m_n = 1$. Then $m_{n-1} = 0$ or -1, for

$$1 = \sum_{j} \left(\sum_{i} \ell_{ij} m_{i} \right)^{2} \ge m_{n}^{2} \ell_{nn}^{2} + (\ell_{n,n-1} m_{n} + \ell_{n-1,n-1} m_{n-1})^{2}$$
$$= \frac{(n+1)}{2n} + \left(\frac{1}{\sqrt{2n(n-1)}} + \sqrt{\frac{n}{2(n-1)}} m_{n-1} \right)^{2}$$

i.e.^j

$$\frac{n-1}{2n} \ge \frac{n}{2(n-1)} \left(m_{n-1} + \frac{1}{n} \right)^2$$
 (B)

Hence $-1 + \frac{1}{n} \le m_{n-1} + \frac{1}{n} < 1^k$ i.e. $m_{n-1} = 0$ or -1.

Now suppose $m_{n-1} = 0$. Then the m_i with $i \leq n-2$ are required to satisfy the condition

$$\sum_{j \le n-2} \left(\left[\sum_{i \le n-2} \ell_{ij} m_i \right] + \frac{1}{\sqrt{2j(j+1)}} \right)^2 = \frac{n-1}{2n} - \frac{1}{2n(n-1)}$$
$$= \frac{(n-1)^2 - 1}{2n(n-1)}$$
$$= \frac{n-2}{2n-2}$$

Now $\frac{1}{\sqrt{2j(j+1)}}$ represents the coordinates of the centre of gravity of the vertices 1 to n-2, and $\frac{n-2}{2n-2}$ is the square of the distance of these vertices from that centre of gravity. Each vertex therefore represents a solution, giving us n-1 solutions with $m_n=1$, $m_{n-1}=0$.

Now suppose $m_{n-1}=-1$. Then we find that $\sum_i \ell_{ij} m_i=0$ if $j\leq n-2$ (since the inequality B is only just satisfiable). This results in $m_i=0$ for $i\leq n-2^{1,\mathrm{m}}$ i.e. only one solution. Hence there are n solutions with $m_n = 1$. Similarly n with $m_n = -1$.

$$g_n = g_{n-1} + 2n, \qquad g_1 = 2$$

Hence $g_n = n(n+1)$.

revised 2023-05-06: 'coordinates of the centre of gravity' for 'condition of the centre of gravity'

ⁱTuring is going to prove that for $n \geq 2$, $g_n = g_{n-1} + 2n$. $g_1 = 2$ because the solutions to condition C3 for n = 1 are $(\ell_{11}=1)$ $m_1=\pm 1$. It is readily verified that for n=2, $\mathbf{m}=\pm (1,0),\pm (0,1),\pm (1,-1)$ are the only solutions to C3, thus $g_2 = g_1 + 2 * 2$ is true. So from here on we can assume $n \ge 3$.

^jThere is no equation A, further suggesting that Turing was 'fair-copying' his notes as a draft-y outline of a proof, for

^kTuring forgot the ' $-1 + \frac{1}{n} \le$ ' or else he left off the absolute value marks. ¹Turing wrote ' $j \le n - 2$ '.

This follows by a reverse-induction argument; start with j = n - 2 and work backwards to j = 1.

ⁿ Following the above argument with $m_n = -1$ leads to the only possibilities being $m_{n-1} = 1$ (providing one solution, mostly zeroes) and $m_{n-1} = 0$ (providing n-1 solutions), but that is unnecessary because **m** is a solution if and only if $-\mathbf{m}$ is a solution and so there are 2n solutions with $m_n \neq 0$.